Nas técnicas de avaliação de fluxo de caixa descontado (FCD), o valor do estoque é estimado com base no valor presente de alguma medida do fluxo de caixa. Os dividendos são a medida mais limpa e direta do fluxo de caixa, porque são claramente fluxos de caixa que vão diretamente para o investidor.
Área para usuários pagantes
Experimente gratuitamente
International Business Machines Corp. páginas disponíveis gratuitamente esta semana:
- Análise dos rácios de actividade a curto prazo
- Análise dos rácios de actividade a longo prazo
- Análise de áreas geográficas
- Valor da empresa (EV)
- Relação entre o valor da empresa e EBITDA (EV/EBITDA)
- Modelo de precificação de ativos de capital (CAPM)
- Índice de liquidez corrente desde 2005
- Índice de dívida sobre patrimônio líquido desde 2005
- Relação preço/lucro líquido (P/E) desde 2005
- Acréscimos agregados
Aceitamos:
Valor intrínseco das ações (resumo da avaliação)
Ano | Valor | DPSt ou valor terminal (TVt) | Cálculo | Valor presente em |
---|---|---|---|---|
0 | DPS01 | |||
1 | DPS1 | = × (1 + ) | ||
2 | DPS2 | = × (1 + ) | ||
3 | DPS3 | = × (1 + ) | ||
4 | DPS4 | = × (1 + ) | ||
5 | DPS5 | = × (1 + ) | ||
5 | Valor terminal (TV5) | = × (1 + ) ÷ ( – ) | ||
Valor intrínseco das ações ordinárias da IBM (por ação) | ||||
Preço atual das ações |
Com base no relatório: 10-K (Data do relatório: 2023-12-31).
1 DPS0 = Soma dos dividendos do último ano por ação ordinária de IBM . Ver Detalhes »
Disclaimer!
A avaliação é baseada em pressupostos padrão. Podem existir fatores específicos relevantes para o valor das ações e omitidos aqui. Nesse caso, o valor real do estoque pode diferir significativamente do estimado. Se você quiser usar o valor intrínseco estimado das ações no processo de tomada de decisão de investimento, faça-o por sua conta e risco.
Taxa de retorno necessária (r)
Suposições | ||
Taxa de retorno do LT Treasury Composite1 | RF | |
Taxa esperada de retorno da carteira de mercado2 | E(RM) | |
Risco sistemático de IBM ações ordinárias | βIBM | |
Taxa de retorno necessária sobre as ações ordinárias da IBM3 | rIBM |
1 Média não ponderada dos rendimentos de oferta de todos os títulos do Tesouro dos EUA com cupom fixo em circulação, vencidos ou exigíveis em menos de 10 anos (proxy de taxa de retorno livre de risco).
3 rIBM = RF + βIBM [E(RM) – RF]
= + [ – ]
=
Taxa de crescimento dos dividendos (g)
Taxa de crescimento dos dividendos (g) implícita pelo modelo PRAT
International Business Machines Corp., modelo PRAT
Com base em relatórios: 10-K (Data do relatório: 2023-12-31), 10-K (Data do relatório: 2022-12-31), 10-K (Data do relatório: 2021-12-31), 10-K (Data do relatório: 2020-12-31), 10-K (Data do relatório: 2019-12-31).
2023 Cálculos
1 Taxa de retenção = (Lucro líquido atribuível à IBM – Dividendos pagos em dinheiro, ações ordinárias) ÷ Lucro líquido atribuível à IBM
= ( – ) ÷
=
2 Índice de margem de lucro = 100 × Lucro líquido atribuível à IBM ÷ Receita
= 100 × ÷
=
3 Índice de giro do ativo = Receita ÷ Ativos totais
= ÷
=
4 Índice de alavancagem financeira = Ativos totais ÷ Total do patrimônio líquido da IBM
= ÷
=
5 g = Taxa de retenção × Índice de margem de lucro × Índice de giro do ativo × Índice de alavancagem financeira
= × × ×
=
Taxa de crescimento dos dividendos (g) implícita no modelo de crescimento de Gordon
g = 100 × (P0 × r – D0) ÷ (P0 + D0)
= 100 × ($ × – $) ÷ ($ + $)
=
onde:
P0 = preço atual da ação ordinária de IBM
D0 = soma dos dividendos do último ano por ação ordinária IBM
r = taxa de retorno necessária sobre as ações ordinárias da IBM
Ano | Valor | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 e seguintes | g5 |
onde:
g1 está implícito no modelo PRAT
g5 está implícito no modelo de crescimento de Gordon
g2, g3 e g4 são calculados usando interpolação linear entre g1 e g5
Cálculos
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=