Nas técnicas de avaliação de fluxo de caixa descontado (FCD), o valor do estoque é estimado com base no valor presente de alguma medida do fluxo de caixa. Os dividendos são a medida mais limpa e direta do fluxo de caixa, porque são claramente fluxos de caixa que vão diretamente para o investidor.
Área para usuários pagantes
Experimente gratuitamente
Trane Technologies plc páginas disponíveis gratuitamente esta semana:
- Balanço patrimonial: passivo e patrimônio líquido
- Estrutura do balanço: activo
- Estrutura do balanço: passivo e patrimônio líquido
- Análise dos índices de liquidez
- Análise dos rácios de actividade a curto prazo
- Valor da empresa (EV)
- Índice de dívida sobre patrimônio líquido desde 2005
- Relação preço/resultado operacional (P/OP) desde 2005
- Análise de receitas
- Acréscimos agregados
Aceitamos:
Valor intrínseco das ações (resumo da avaliação)
Ano | Valor | DPSt ou valor terminal (TVt) | Cálculo | Valor presente em |
---|---|---|---|---|
0 | DPS01 | |||
1 | DPS1 | = × (1 + ) | ||
2 | DPS2 | = × (1 + ) | ||
3 | DPS3 | = × (1 + ) | ||
4 | DPS4 | = × (1 + ) | ||
5 | DPS5 | = × (1 + ) | ||
5 | Valor terminal (TV5) | = × (1 + ) ÷ ( – ) | ||
Valor intrínseco das ações ordinárias da Trane Technologies (por ação) | ||||
Preço atual das ações |
Com base no relatório: 10-K (Data do relatório: 2022-12-31).
1 DPS0 = Soma dos dividendos do último ano por ação ordinária de Trane Technologies . Ver Detalhes »
Disclaimer!
A avaliação é baseada em pressupostos padrão. Podem existir fatores específicos relevantes para o valor das ações e omitidos aqui. Nesse caso, o valor real do estoque pode diferir significativamente do estimado. Se você quiser usar o valor intrínseco estimado das ações no processo de tomada de decisão de investimento, faça-o por sua conta e risco.
Taxa de retorno necessária (r)
Suposições | ||
Taxa de retorno do LT Treasury Composite1 | RF | |
Taxa esperada de retorno da carteira de mercado2 | E(RM) | |
Risco sistemático de Trane Technologies ações ordinárias | βTT | |
Taxa de retorno exigida das ações ordinárias da Trane Technologies3 | rTT |
1 Média não ponderada dos rendimentos de oferta de todos os títulos do Tesouro dos EUA com cupom fixo em circulação, vencidos ou exigíveis em menos de 10 anos (proxy de taxa de retorno livre de risco).
3 rTT = RF + βTT [E(RM) – RF]
= + [ – ]
=
Taxa de crescimento dos dividendos (g)
Taxa de crescimento dos dividendos (g) implícita pelo modelo PRAT
Trane Technologies plc, modelo PRAT
Com base em relatórios: 10-K (Data do relatório: 2022-12-31), 10-K (Data do relatório: 2021-12-31), 10-K (Data do relatório: 2020-12-31), 10-K (Data do relatório: 2019-12-31), 10-K (Data do relatório: 2018-12-31).
2022 Cálculos
1 Taxa de retenção = (Lucros líquidos atribuíveis à Trane Technologies plc – Dividendos em dinheiro declarados) ÷ Lucros líquidos atribuíveis à Trane Technologies plc
= ( – ) ÷
=
2 Índice de margem de lucro = 100 × Lucros líquidos atribuíveis à Trane Technologies plc ÷ Receita líquida
= 100 × ÷
=
3 Índice de giro do ativo = Receita líquida ÷ Ativos totais
= ÷
=
4 Índice de alavancagem financeira = Ativos totais ÷ Patrimônio líquido da Total Trane Technologies plc
= ÷
=
5 g = Taxa de retenção × Índice de margem de lucro × Índice de giro do ativo × Índice de alavancagem financeira
= × × ×
=
Taxa de crescimento dos dividendos (g) implícita no modelo de crescimento de Gordon
g = 100 × (P0 × r – D0) ÷ (P0 + D0)
= 100 × ($ × – $) ÷ ($ + $)
=
onde:
P0 = preço atual da ação ordinária de Trane Technologies
D0 = soma dos dividendos do último ano por ação ordinária Trane Technologies
r = taxa de retorno exigida sobre as ações ordinárias da Trane Technologies
Ano | Valor | gt |
---|---|---|
1 | g1 | |
2 | g2 | |
3 | g3 | |
4 | g4 | |
5 e seguintes | g5 |
onde:
g1 está implícito no modelo PRAT
g5 está implícito no modelo de crescimento de Gordon
g2, g3 e g4 são calculados usando interpolação linear entre g1 e g5
Cálculos
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= + ( – ) × (2 – 1) ÷ (5 – 1)
=
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= + ( – ) × (3 – 1) ÷ (5 – 1)
=
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= + ( – ) × (4 – 1) ÷ (5 – 1)
=